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Abstract 

Summation of the components of interactomic vectors, 
r n, normal to a crystallographic plane, (hkl), divided by 
the area of the periodic repeat unit over which the 
vectors operate, provides a quantity, or, (hkl), defined as 
an interaction factor. If all values of o" n for a given 
interatomic vector are plotted in the directions normal 
to all planes in the structure, the result is a structural 
quadric, with geometric properties analogous to 
representation quadrics for single-crystal properties. All 
the atomic interactions in a crystal can thus be 
represented by a group of quadrics having common 
semiaxes. It is proposed that crystal properties are a 
function or functions of the structural quadrics and 
calculations incorporating some simplifying 
assumptions are presented to indicate possible ap- 
plications of the concept. 

Introduction 

The relationships between point-group symmetry and 
single-crystal properties are well defined. Magnitudes 
and directions of vectors representing linear compres- 
sibility in all crystallographic directions, for example, 
may be calculated directly from elastic constants and 
illustrated graphically as representation quadrics. 
Young's moduli can also be calculated from elastic 
constants and represented by rather more complex 
figures. Similarly, variation of thermal expansion and 
diffusion coefficients may be determined as functions of 
crystallographic direction after measurement of values 
in one, two, or three known directions and may be 
represented as quadrics whose geometric properties- 
plotting the reciprocals of the square roots of the 
magnitudes produces ellipsoids or hyperboloids - 
provide a means of determining and visualizing the 
relationships between applied and resultant forces. 
Single-crystal optical properties can also be represented 
as quadrics if relative dielectric impermeabilities are 
plotted as functions of crystallographic direction, 
though it is more useful to consider the reciprocal roots, 
the indices of refraction, which can be represented by 
spherical or ellipsoidal optic indicatrices. 
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The relationships between representation quadrics 
for single-crystal properties and the crystal structure 
are not so well understood, however. Aside from 
theories of covalent bonding, which describe in- 
teratomic forces only among nearest neighbors in terms 
of orbital configurations, and the Brillouin-zone-Fermi- 
surface treatments resulting from the band theory of 
metals, there is inadequate basis for quantitative 
understanding of the relationships between properties 
and the atomic arrangements of any but the simplest 
structures. There is a definite need, therefore, for a 
general geometric formulation to represent atomic 
interactions in crystals, regardless of structural com- 
plexity or bond type. Ideally, such a formulation will be 
strictly geometric, based on a static model, expressed in 
terms of structural variables - lattice parameters and 
atomic coordinates - and define certain geometric con- 
ditions which must be satisfied by all crystals under all 
conditions. Once the geometric conditions are defined, 
it should then be possible to evaluate interatomic forces 
more directly and, conversely, to predict how struc- 
tural variables must change in response to changes in 
conditions, particularly temperature and pressure. The 
work described here is only a first step toward such a 
general geometric formulation and is restricted to 
simple structures - metallic elements with no variable 
coordinates. Subsequent work will show, however, that 
the method is applicable to all structures and that the 
greatly increased complexity introduced by con- 
sideration of more complex chemistry and variable 
atomic coordinates is tractable and informative. 

General considerations 

The Madelung constant was developed as a means of 
expressing the relative contributions of ions of like and 
unlike charge on successive coordination spheres about 
a single ion so that all the attractive and repulsive 
energies in an ionic crystal could be expressed as a 
function of the nearest-neighbor distance in the 
Born-Land6 equation for lattice energy. The factors 
considered were the coordination number in each 
successive sphere and the distance from the central ion, 
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expressed as a multiple of the nearest-neighbor dis- 
tance, so the Madelung summation is strictly a function 
of the structure. Because of the non-directional nature 
of ionic forces, however, it makes no reference to 
crystallographic direction, is applicable only to purely 
ionic crystals, and is difficult to calculate for complex 
crystals. The method developed below utilizes the 
essence of the Madelung summation but differs from it 
in that the components of all interatomic vectors, r,,, 
normal to a crystallographic plane, (hkl), are summed 
over a periodic repeat unit and divided by the area over 
which those components operate. An interaction factor, 
tr,, is thereby derived for each successive interatomic 
distance for each crystallographic direction. The 
summation may be carried out over as many successive 
distances in as many directions as needed. The 
mathematical form of the numerical values of a single % 
over all crystallographic directions proves to be that of 
a representation quadric. The geometric effects of all 
the interatomic vectors in a crystal can be represented 
in all crystallographic directions by a group of quadrics 
with common semiaxes which coincide with the 
crystallographic axes in the same way as the represen- 
tation quadrics for properties. 

Interaction factors 

The interaction factor is defined by 

Y rn(hkl) 
a,(hkl) - , (1) 

A hkl 

where ~ r,(hkl) is the sum of the magnitude of all the 
components of the interatomic vectors, r n, normal to 
the (hkl) plane and A nk t is the area of the crystal- 
lographic repeat unit over which the summation is 
made. As shown below, the value of e,, is also defined 
as a multiple, M,,, of the interplanar spacing, dnk l, 

divided by A hkt: 

dhkl 
a , ( h k l ) = M , - - .  (2) 

Ankt 

F.c.c. and f.c.t, metals 

The method of summing interatomic vectors in 
anisotropic crystals may be illustrated with the struc- 
ture of tetragonal indium, as shown in Fig. 1. To show 
the relationship between that structure and c.c.p. 
metals, the unit cell chosen is f.c. tetragonal rather than 
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Fig. 1. Method of summation of components of interatomic vectors 
r t through r 6, normal to the (101) plane of tetragonal indium. The 
a' parameter corresponds to ,v/2 a of the b.c. tetragonal unit cell. 

Table 1. Interatomic vectors for face-centered cubic metals and the tetragonal distortion (M at 000; ~¢9; ~½, 0~z) 

Coordi- Coordi- 
r,, f.c.c, hkl  nation q (A), Pb r n, f.c.t, hkl nation r n (A), In r ,  (A), 3' Pu 

r t = { V / 2 a  (110)  12 3.5005 r I = ½ ~  (110)  4 3.2517 3.339 

r 2 = ½ ~ +  c 2 (101)  8 3.3767 3.243 

r 2 = ½ V / - 4 a = a  (200)  6 4.9505 r 3 = ½ ~ = a  (200)  4 4.5986 4.722 

r 4 =½ 4 V / ~ = c  (002)  2 4.9459 4.446 

r 3 = ! V / ' 6 a  (112)  24 6.0631 r 5 = ½v/5a 2 + c 2 (211)  12 5.7052 5.728 

r 6 =½v/2a  2 + 4c 2 (112)  12 5.9191 5.560 

r4=½x/rsa  = k / ~ a  (220)  12 7.0011 r 7 =½ 8V/~  (220)  4 6.5034 6.678 
r s = ½v/4a z + 4c 2 (202)  8 6.7535 6.486 

r s = ½ V / - ~ a  (310)  24 7.8274 r 9 = ½ lx / ] "~  (310)  8 7.2710 7.466 

rl0 = ½v/9a 2 + c ~ (301)  8 7-3278 7.424 

rl~ = ½v/a 2 + 9c 2 (103)  8 7.7670 7.075 

r6 = ½ V / ~  a = V/3a (222)  8 8.5745 r12 = ½v/8a 2 + 4c 2 (222)  8 8.1704 8.023 

r , = ½ v / h  2 + k 2 + 12a;h 2 + k 2 + 12= 2N r, = ½v/(h 2 + k2)a 2 + 12c 2 
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the usual b.c. tetragonal cell, and the Miller indices 
correspond to the f.c.t, cell. 

As shown in Table 1, successive interatomic vectors 
in face-centered cubic metals can be developed sys- 
tematically with crystallographic terms. Interatomic 
distances are shown to be equal to ½(h z + k 2 + I2)U2a, 
where a is the unit-cell parameter and h z + k 2 + l 2 is the 
quadratic form of the Miller indices of the directions of 
the vectors (hkl ) .  In all cases, the coordination number 
is equal to the multiplicity of planes with the same 
indices {hkl }. If the f.c.c, metal structure is distorted by 
expansion in the [001] direction, as in tetragonal 
indium, or by compression, as in 6'-plutonium, the 
interatomic vectors are split into two or more vectors 
whose magnitudes and directions are also listed in 
Table 1. The directions and coordination numbers are 
defined in the same way as for f.c.c, except that they 
are in accordance with multiplicity requirements of 
tetragonal symmetry. 

It is now necessary to define the unit area over which 
the summation is to be made. In the plane of the 
projection the linear repeat unit has been chosen as (a 2 
-t- C2) 1/2, the distance between the two lines drawn 
normal to the (101) plane in Fig. I. Normal to the 
projection, the linear repeat unit has been chosen as a. 
The area over which the summation is to be made, 
therefore, is a rectangle with A 101 = a( a2 + C 2 ) 1 / 2 "  

If a (101) plane, which will be normal to the 
projection, is drawn, as shown by the dashed line, it is 
seen that there are four r I interatomic vectors operating 
across that plane, each with a component normal to 
(101) equal to 1 ~dl0~. The sum of those components is 
thus 2d10 a, or 2ac/(a 2 + c2) v2. The interaction factor is 
now defined as the sum of the components normal to 
the plane, divided by the area over which they operate: 
al(101 ) = 2[d/A]lo I = 2c/(a 2 + e2). The same result 
will be obtained by summing across any of the {101} 
planes. Similarly, the interaction factors or2(101) 
through tr6(101) can be obtained by summing the 
components of the r/1 vectors shown in Fig. 1. The same 
procedure may be used to sum the components of any 
interatomic vector, r,, operating across any plane, 
(hkl), and an interaction factor, an(hkl), may thus be 
obtained. 

This has been done for the 12 interatomic vectors of 
the f.c.t, structure, as defined in Table 1, normal to 
some 50 planes. For clarity of presentation, ease of 
mathematical manipulation, and to avoid tabulating 
over 600 terms, it is convenient to develop generalized 
expressions in a compact form. Proceeding from the 
logical assumption that the net effect of any interatomic 
interaction will be some function of the inverse of the 
interatomic distance, r/l, an interaction function is 
defined as 

a/1 (3) /1 = - - '  
R, 

where R,  = f/1(r/1), that is, some function of the 
interatomic distance. The total of all interactions across 
a given plane (hkl) can now be written as 

a I (hkl) 02 (hkl) o/1(hkl) 
}" S/1(hkl) - + ~ + ... + ~ ,  (4) 

R 1 R 2 R/1 

or more compactly as 

" o/1(hkl)  
Z S.(hkl)= ~ g. 

i = 1  

(5) 

Because the value of a,,(hkl) proves to be, in all cases, a 
multiple, M,,, of d h J A  hkt, (5) may be rewritten as 

dhkt ~ ,  Mn(hkI)  
S , (hk l )  = ~ i=1 R/1 

(6) 

The result of the summations in f.c.t, metals are 
summarized in Table 2 in accordance with the notation 
developed above. The results for only four crystal- 
lographic directions are tabulated; in these, M n values 
appear as integrals within the brackets and dhkl/Ahkt 
values appear as common factors outside the brackets. 
The results have been generalize0 as Y S,,(hkl), in 
which it is seen that both dnkt/ahkt and M n are strictly 
functions of the lattice parameters and the crystallo- 
graphic directions. It is obvious, therefore, that it is 
necessary only to determine o/1 values across the (100) 
and (001) planes in order to write the 5-S,(hkl)  
expression; valid for all directions. Summation over all 
planes in the [001] zone produces a single expression, 
Y S/1(hkO), indicating a circular section normal to the 
[001] axis. For the f.c.c, structure, ~ S , (hk l )  reduces to 
a single expression, valid for all crystallographic 
directions. 

A particularly useful property of the interaction 
functions is that, if any two are equated, a single 
expression is derived in terms of R,  and (e/a) 2, as 
shown in Table 2. Use of that relationship will be 
reserved for future work. 

B.c.e. and f.c.t, metals 

The systematic development of expressions for 
body-centered cubic metals and the tetragonal distor- 
tion, as exemplified by protactinum and/?-mercury, has 
been accomplished and the data are presented in Tables 
3 and 4. The expressions are seen to be comparable in 
all respects to those developed for face-centered metal 
structures. 

H.c.p. metals 

Expressions for the first six coordination spheres of 
hexagonal-close-packed metals have been derived, as 
shown in Table 5. They prove to be similar to those for 
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Face-centered tetragonal metals 

c [ 2  2 4 0 20 4 8 8 20 18 2 16 ] 
Y S.(hkO) = 7 [ ~  + - -  + - -  + - -  + - -  + - -  + - -  + - -  + - -  + + + ] R2 R3 R4 R5 R6 R7 Rs R9 Rio Rlt RI2 

0 4 1 6 0 1 6 0  4 
Z S.(001) = -~- [R--ll + - -  + - -  + - -  + - -  + - -  + - -  + - -  + - -  + + + J R2 R3 R4 R5 R6 R7 Rs R9 Rio RII R~2 

c [ 2  6 4 4 2 8  2 0 8 2 4  20 22 38 3 2 ]  
5 S.(101) a 2 + c  2 + - - + - - + - - + - - + - - + - - + - - + - - +  + + 

l R2 R3 R4 R5 R6 R7 Rs R9 Rio Rll RI2 

c 1"4 8 8 4 48 24 16 32 20 40 40 48 ] 

[RI + - - + - - + - - + - - + - - + - - + - - + - - + - - +  + ~  ] ~ S . ( l l l )  a 2 + 2 e  2 R2 R3 R4 R5 R6 R7 Rs R9 Rio R11 R12 

Z S.(h~t)  = 
C [ 2(h 2 + k 2) 2(h 2 + k 2) + 4l 2 4(h 2 + k 2) 4l 2 

- - +  + - - + - -  
12a 2 + (h 2 + k2)c 2 R 1 R2 R3 R4 

20(h 2 + k  2)+ 8l 2 4(h 2 + k  2)+ 16l 2 8(h 2 + k  2) 8(h 2 + k  2)+ 1612 20(h 2 + k  2) 
+ + + - - +  + 

R5 R6 R 7 Rs R9 

18(h 2 + k 2) + 4I 2 2(h 2 + k 2) + 36l 2 16(h 2 + k 2) + 1612 ] 
+ + + ] RI0 RII RI2 

For Z Sn(h,klll)= Z Sn(h2k2l 2) 

I 2 C -  1 2 2C 1 0 - 4 C  8 C -  2 4 8 C - 4  10 9 -  2C 1 8 C -  1 8 -  8C - - + - - - - - - + - - + - - +  - - + - - + - -  - - + - - =  
Rl R 2 R 3 R4 R5 R6 R7 Rs R9 Rio Rll RI2 

Face-centered-cubic metals 

 Sn hk,, 4 + + + + + R 2  R324 Rl6 R40 R616] 

- 0  

Table 3. I n t e r a t o m i c  v e c t o r s  f o r  b o d y - c e n t e r e d - c u b i c  m e t a l s  a n d  t he  t e t r a g o n a l  d i s t o r t i o n  ( M  a t  000; 

Coordi- 
r,, b.c.c, hkl nation r,  (A), Fe 

r i=½v/3a (111) 8 2.4824 

r 2 = ½ v ~ a = a  (200) 6 2.8664 

ra=½V/'ffa=v/2a (220) 12 4.0537 

r,=½Vq-ia (113) 24 4.7534 

r , = ½ V / - ~ a = v / 3 a  (222) 

r6= ½V/-~ a = 2 a (400) 

8 4.9648 

6 5.7328 

r n, b.c.t. 

r 1 = ½V/~2 + c 2 (111) 8 3.213 3.158 

r 2 =½ 4V/4~=c (002) 2 3.238 2.825 
r 3 = ½k/"~ 2 = a (200) 4 3-925 3.995 
r 4 = ½v/4a 2 + 4¢ 2 (202) 8 5.088 4.893 

r 5 =½ 8V/-~ (220) 4 5.551 5-560 
r 6 = ½v/2a 2 + 9c 2 (113) 8 5.594 5.093 

r 7 =½V/10a 2 + c 2 (311) 16 6.414 6.473 

r s = ½v/8a 2 + 4c 2 (222) 8 6.426 6.317 

r 9 = ½ ~ =  2c (004) 2 6.476 5.650 

rio = ½ lX/]--~ = 2a (400) 4 7-850 7.990 

Coordi- 
hkl nation r,  (A), Pa r ,  (A), fl-Hg 

r.  = ½v/h 2 + k 2 + 12 a; h 2 + k 2 + l 2 = 4Nand  8N + 3 r n = ½v/(h 2 + k2)a 2 + 12c 2 
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Table 4. S u m m a t i o n s  o f  in teract ion f u n c t i o n s  f o r  b.c.c, me ta l s  a n d  the t e t ragonal  d is tor t ion 

Body-centered-tetragonal metals 

-~2 [~---~ 0 2 4 4 2 20 8 0 8 
~'. S.(hkO) = + - -  + - -  + - -  + - -  + - -  + - -  + - -  + - -  + 

R 2 R 3 R 4 R 5 R6 R7 Rs  R9 Rio 

y. Sn(001) = c [ 2  2 0 8 0 18 4 8 8 0 + - - + - - + - - + - - + - - + - - + - - + - - +  

R2 R3 R4 R5 R6 R7 R8 R9 R~o 

C [ 2 ( h  2 + k  2 ) +  2/2 212 2 (h  2 + k  2) 

[ - b - -  -b ~ 
~" Sn(hkl)  = l 2 a 2 + (h 2 + k 2) c2 R 1 R2 R3 

4 ( h  2 + k 2) + 8 l  2 4 ( h  2 + k 2) 2 (h  2 + k 2) + 18/2 
+ + - - +  

R 4 R 5 R6 

8(  h2 + k2) + 812 812 8(  h2 + k2) 1 
+ + - - + ~  l Rs R9 Rio 

20(h 2 + k 2) + 412 
+ 

For Z S,(h~ k~ l 1) = Z S,(h 2 k 2 l 0 

I - C  C 1 4 C -  2 2 9 C - 1  10-2C 4 - 4 C  4C 
+ - - +  - - + ~ 4  + - -  

R I  R2 R3 R4 Rs  R6 R7 R s  R9 

R7 

4 [:1 = 0 where C = 
Rt0 

Body-centered-cubic metals 

Z Sn(hkl) = + - -  + - -  + - -  + - -  + 
R2 R3 R4 R5 

Table 5. S u m m a t i o n s  o f  in teract ion f u n c t i o n s  f o r  
hexagona l - c lo se -packed  me ta l s  ( M at  000; 

r.  r. (A), Be r. (A), Mg r. (A), Cd r. CA), Ideal 

r I =~  l ~ ' i ~  + 9c 2 2.2249 3.19688 3.29354 3.28210 
r z = a 2.2854 3.20927 2.97887 3.28210 

rj = ~: 4V/4-~ + 9c 2 3.1896 4.52984 4.44084 4.64159 
r 4 = c 3.5829 5.21033 5.61765 5.35965 
r 5 = ~ V/~5"-+ 9c 2 3.9238 5.55147 5.34740 5.64876 
r 6 = v/~a  3.9584 5.55862 5.15955 5.65876 

24 32 0 112 ] k S . ( h k O ) - ~  8 + + - - + - - +  + 72 

-vff(4c,)L~ ~ R, R, R--~- R,~J 

o+9 o] 
k S.(001) + + - -  + - -  + - -  

V.'~T3a 2) ~ R z R3 R 4 R s R6 

_ x ( ) - + _ + _ + _ + - - +  
S,, 101 V~( 3az+4c  z) R2 R3 R4 Rs 

c [2m+3n 6m 8 m + 3 n  + - - + - - + 4 n  2 8 m + 6 n  18_~m 1 

x_ S~(hkl) V/3( na2 + mcZ) L R l + ~ + R3 R4 R s R6 J 

m = 4(h 2 +hk+ k2);n = 312 

For " S~(h~ k t l t) = x__ S.(h z kz 12 ) 

3 C -  2 6 8 - 3C 4C 

R t Rz R3 R4 

I - q  
28 - 6C 18 I c l  z 

- 0 where C = 
R~ R 6 

f.c.t, and b.c.t, metals, though somewhat more cumber- 
some because of the 120 ° angles between the a axes, 
and they do not reduce to a single isotropic case for 
ideal h.c.p. 

Other  s t ruc tures  

The methods outlined above have been used to 
determine interaction factors for many other structures, 
compounds as well as metallic elements, and the 
relationships described above have been found to hold. 
The interaction factors for cubic crystals are identical 
in all directions and those for crystals of lower 
symmetry are functions of lattice parameters and Miller 
indices when there are no variable coordinates. Space 
limitations require, however, that discussion of these be 
included in future work. 

Geometric  properties of  interaction factors 

If the numerical values of a,, are plotted for all {hkl}  
planes - as vectors normal to {hkl}  - the figures 
produced are representation quadrics. The magnitude 
of a vector a ' ( h k l ) ,  in a direction normal to (hkl) ,  is 
expressed exactly by the equation 

a ' ( h k l )  = an(100) cos 2 01 + on(010) cos 2 02 

+ a~(001) cos 2 O z. (7) 
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where a,(100), a,(O 10), and a,(O01) are the interaction 
factors across the (100), (010), and (001) planes and 
0 l, 02, and O 3 are the angles between the vector a,(hkt) 
and the [100], [010] and [001] axes, respectively. 

Fig. 3 illustrates the representation quadrics for the 
12 coordination spheres in tetragonal indium. To 
facilitate plotting, values of a,/r,, here referred to as 
normalized interaction factors, have been plotted; the 
units are A -2, therefore. For the case of the f.c.t. 

[oof] 
0 5  ~-z 

[hkO] 

Fig. 2. Normalized interaction factors for tetragonal indium, 
plotted as functions of crystallographic direction. Each is a 
representation quadric of revolution with a circular section 
normal to [001 ]. 

rooo o ,~ 

' 9 ~l 

/4 

\ 

: ~ / : ] ! :  : : , 1 ~ / . . . , . ~  : rhkO'l 

Fig. 3. Root inversions of the representation quadrics for tetragonal 
indium. The figures are ellipsoids of revolution, cylindrical 
hyperboloids, and a planar hyperboloid, symmetric about [001 ]. 

structure shown in Fig. 2, a,(100) = (7,(010), so the 
quadrics are figures of revolution, with circular sections 
normal to [001 ]. 

If the root inversions, [a'(hkl)] -l/z, are plotted, the 
figures produced are ellipsoids of revolution, cylindrical 
hyperboloids where a,(001) = 0, or a planar hyper- 
boloid in the case where 0,(100) = 0. This is shown in 
Fig. 3 where the root inversions of (7,/r, have been 
plotted. 

For cubic crystals, the quadrics and root inversions 
are spherical. Though no examples are given here, 
crystals of lower symmetry produce triaxial quadrics 
with orientations similar to thermal expansion quadrics. 

The quadrics for h.c.p, metals are also figures of 
revolution. If interaction factors are calculated for a 
hypothetical h.c.p, metal with the ideal c/a = V/8/3, r 1 
and r 2 are equal and the quadric for (7~ + (72 is spherical. 
The quadric for o 3 is also spherical, but those for (74 and 
(74 + (76 are not, reflecting the fact that beyond the third 
coordination sphere, the geometric distribution of 
forces is anisotropic in all cases, providing a qualitative 
explanation for the fact that the c/a ratio for h.c.p. 
metals is never ideal. 

Discussion of possible applications 

Although the primary purpose of the present work is to 
illustrate the method whereby atomic interactions in 
simple metal structures can be represented by groups of 
quadrics pertaining to the separate interatomic dis- 
tances and having common semiaxes, it is obvious that 
the implications are numerous. It will be shown in 
subsequent papers that the structural quadrics 
developed here can be related to property quadrics to 
provide fundamental information about interatomic 
forces. It will also be shown that derivation of 
structural quadrics for crystals having variable coor- 
dinates may be used to predict how those coordinates 
will change with changes in temperature and pressure. 
In short, it is anticipated that this work will ultimately 
result in new equations of state for crystalline solids. 
Though that work is not yet complete and any detailed 
discussion is beyond the intended scope of this paper, it 
is possible at this point to present an example of one 
way structural quadrics may be used. 

Fig. 4 shows volume compressibilities, calculated 
from room-temperature elastic constants selected ran- 
domly from the compendium of Simmons & Wang 
(1971), for metallic elements with the structures 
already treated. It is obvious that the trends are 
periodic and, though the compressibilities surely are 
functions of both the net interatomic forces and the 
crystal structures, the effect of either on the compres- 
sibilities is not at all apparent. A plot of linear 
compressibilities versus atomic numbers shows essen- 
tially the same trends. 
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With the lattice parameters for the metallic elements, 
tabulated by Wyckoff (1963), and the linear compressi- 
bilities, from the elastic constants used to calculate the 
volume compressibilities shown in Fig. 4, values of the 
lattice parameters were calculated for the lower and 
upper limits of a pressure interval, in this case at 0 and 
l0 s Pa. From these values of the lattice parameters, tr~ 
through 06 were calculated for the axial directions for 
each of the elements for pressures of 0 and 10 s Pa and 
the differences, Atr,, were taken. Proceeding on the 
admittedly oversimplified assumption that the net 
interatomic forces are a function of 1/~ for all 
interatomic distances in metal structures, the relation- 
ship between the changes in dimensions of the 
structural quadrics and the change in hydrostatic 
pressure may be expressed for cubic crystals in all 
directions as 

Ao" 1 At72 AO 3 AO" 4 A65 /106 
+ ~ + - -  + - -  + - -  + ~ = 1 0  - z 2  N A - 2 ,  

r~ ~ r~ r~ r~ r~ 

where 10 -x2 N A -2 is the AP, 10 s Pa. The AP value 
used is immaterial because Ao, values are functions of 
the AP. Similarly, the relationships for hexagonal and 
tetragonal crystals may be expressed in the same 
manner except that the numerical values of Aa,, will be 
different for each crystallographic direction, with the 
limits in the [100] and [001] directions. 

Using the calculated values of tr,/r., with units of 
A -2, rather than Atr,,, and the values of r, at l0 s Pa, 
values of p, referred to here as the compressibility 
exponent, were calculated by iteration for each of the 
elements. The results of those calculations are shown in 
Fig. 5, in which it is seen that the values now fall on 
nearly straight lines with a maximum in each period 
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Fig. 4. Volume compressibilities of b.c.c., f.c.c., h.c.p., diamond, 
and tetragonal In and Sn, calculated from room-temperature 
elastic constants selected at random from Simmons & Wang 
(1971). 

which coincides with the end of a transition series or, in 
the case of the second and third periods, with the 
appearance of molecular structures. The most remark- 
able feature of the calculated compressibility expo- 
nents is that they are independent of structure and, by 
inference, more directly related to the net interatomic 
forces. In effect, the influence of structure has been 
removed from the picture and the results indicate trends 
of a more fundamental type. 

Assignment of one value of the exponent to all 
interatomic distances is certainly not valid, particularly 
for h.c.p, metals. For cubic crystals, there is no way to 
check the validity of the assumption at present. For 
h.c.p, metals, however, calculation of the exponents 
provided some interesting insights. If the assumption of 
one exponent for all distances in h.c.p, were correct, it 
may be assumed that the same value of p would be 
obtained by iteration in all directions. This was not 
strictly true, though the extreme values, those for the 
[100] and [001] directions were in nearly all cases 
within 1% of each other, the notable exceptions being 
Zn and Cd, which are not shown in Fig. 5. These will 
be treated in future work. In no case did the calculated 
exponents tend to converge with inclusion of ad- 
ditional terms, indicating that the differences are a 
measure of differences in forces operating between 
nearest neighbors and those between more distant 
neighbors. 

The same calculations could have been carried out 
using values of Ao, rather than A(oJr,), the difference 
being merely that the values of the compressibility 
exponents would have been increased by 1. At this 
point, the distinction is not important. A quadric may 
be added to or subtracted from another quadric, 
multiplied by a constant, divided by a constant, raised 
to some power, or manipulated in several other ways 
and still be a quadric. The important fact is that 
single-crystal properties are some function or functions 
of the structural quadrics developed in this work and to 
be developed later and, once those functions are 
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Fig. 5. Compressibility exponents of the elements calculated from 
the values shown in Fig. 4 and the normalized interaction factors 
for the appropriate structural type. 
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discerned, some important fundamental features of 
bonding and structure will be apparent. Structural 
quadrics should be a useful concept for future work in 
crystallography. 
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Abstract 

An expression for the variance of a deviation of an 
atom from the best plane of the group to which the 
atom belongs has been derived and a practical 
procedure for obtaining the variance, while neglecting 
correlations between different atoms, is suggested. 

One of the results of a structural study, particularly 
relevant for unsaturated or aromatic organic com- 
pounds, is the degree of planarity of a group of atoms. 
The deviations of the atoms from the best plane of the 
group are often interpreted in terms of interatomic 
and/or intermolecular forces, and in order to put such 
interpretations on a sound basis, it is often of interest to 
find out how significant these deviations really are. 
Since the statistics of deviation of atoms from the best 
plane, and their implementation in practical calcu- 
lations, have not been, to the author's knowledge, 
discussed in the crystallographic literature, it was 
thought desirable to deal with this subject as described 
in what follows. This can, of course, be presented in a 
general and rigorous manner, e.g. by discussing the 
transformation of the variance-covariance matrix to 
the coordinate system of interest (Cram+r, 1951). It 
seems, however, that the evaluation of the variance of 
an atomic position along a given direction is more 
appropriate to the level of approximation usually 
adopted in crystallographic studies. 

0567-7394/81/020249-03501.00 

The usual statistical treatments of the linear trans- 
formation of a vector of random variables, and its 
variance-covariance matrix, assume that all the quan- 
tities are referred to a Cartesian system (e.g. Linnik, 
1961). This is not suitable for our purpose, since the 
transformations involved include, at least in part, a 
transition from the triclinic to a Cartesian system and 
vice versa, but can be readily modified as shown below. 

We assume here that the frequency distribution of 
the position of an atom (the outcome of a least-squares 
refinement) obeys the trivariate normal law (e.g. 
Cruickshank, 1967), with the true position as the mean. 

Let 

~r=(~1~2~3), x r = ( x  ix  2x 3) (1) 

be the possible (random) and mean atomic position 
vectors, expressed in contravariant components (Pat- 
terson, 1967). Then the expectation value 

B = E [ ( ~ -  x ) ( ~ -  x)rl (2) 

is the variance-covariance matrix of such a position 
vector. In practice, B iJ is given by 2 ij tr(x t) a(xj), where 
2 iJ are the correlation coefficients and a the estimated 
standard deviation. 

Let now 

~r = (k 1 k2k3 ) (3) 

be a constant unit vector, expressed in covariant 
components (in our case referred to the reciprocal- 
lattice basis vectors). The scalar Woduct kr(~ - x) is 
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